Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.126
Filtrar
1.
Elife ; 122024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38655862

RESUMO

Ikaros is a transcriptional factor required for conventional T cell development, differentiation, and anergy. While the related factors Helios and Eos have defined roles in regulatory T cells (Treg), a role for Ikaros has not been established. To determine the function of Ikaros in the Treg lineage, we generated mice with Treg-specific deletion of the Ikaros gene (Ikzf1). We find that Ikaros cooperates with Foxp3 to establish a major portion of the Treg epigenome and transcriptome. Ikaros-deficient Treg exhibit Th1-like gene expression with abnormal production of IL-2, IFNg, TNFa, and factors involved in Wnt and Notch signaling. While Ikzf1-Treg-cko mice do not develop spontaneous autoimmunity, Ikaros-deficient Treg are unable to control conventional T cell-mediated immune pathology in response to TCR and inflammatory stimuli in models of IBD and organ transplantation. These studies establish Ikaros as a core factor required in Treg for tolerance and the control of inflammatory immune responses.


Assuntos
Fatores de Transcrição Forkhead , Regulação da Expressão Gênica , Fator de Transcrição Ikaros , Linfócitos T Reguladores , Animais , Fator de Transcrição Ikaros/metabolismo , Fator de Transcrição Ikaros/genética , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Fatores de Transcrição Forkhead/genética , Camundongos , Camundongos Knockout
2.
Sci Rep ; 14(1): 9458, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658633

RESUMO

Male sex is a risk factor for colorectal cancer (CRC) with higher illness burden and earlier onset. Thus, we hypothesized that loss of chromosome Y (LOY) in the tumor micro-environment (TME) might be involved in oncogenesis. Previous studies show that LOY in circulating leukocytes of aging men was associated with shorter survival and non-hematological cancer, as well as higher LOY in CD4 + T-lymphocytes in men with prostate cancer vs. controls. However, nothing is known about LOY in leukocytes infiltrating TME and we address this aspect here. We studied frequency and functional effects of LOY in blood, TME and non-tumorous tissue. Regulatory T-lymphocytes (Tregs) in TME had the highest frequency of LOY (22%) in comparison to CD4 + T-lymphocytes and cytotoxic CD8 + T-lymphocytes. LOY score using scRNA-seq was also linked to higher expression of PDCD1, TIGIT and IKZF2 in Tregs. PDCD1 and TIGIT encode immune checkpoint receptors involved in the regulation of Tregs function. Our study sets the direction for further functional research regarding a probable role of LOY in intensifying features related to the suppressive phenotype of Tregs in TME and consequently a possible influence on immunotherapy response in CRC patients.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Linfócitos T Reguladores , Microambiente Tumoral , Humanos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/genética , Microambiente Tumoral/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Masculino , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/secundário , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Idoso , Receptor de Morte Celular Programada 1/metabolismo , Receptor de Morte Celular Programada 1/genética , Pessoa de Meia-Idade , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Feminino , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo
3.
Sci Adv ; 10(11): eadj2802, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489359

RESUMO

Development of T cells is controlled by the signal strength of the TCR. The scaffold protein kinase D-interacting substrate of 220 kilodalton (Kidins220) binds to the TCR; however, its role in T cell development was unknown. Here, we show that T cell-specific Kidins220 knockout (T-KO) mice have strongly reduced invariant natural killer T (iNKT) cell numbers and modest decreases in conventional T cells. Enhanced apoptosis due to increased TCR signaling in T-KO iNKT thymocytes of developmental stages 2 and 3 shows that Kidins220 down-regulates TCR signaling at these stages. scRNA-seq indicated that the transcription factor Aiolos is down-regulated in Kidins220-deficient iNKT cells. Analysis of an Aiolos KO demonstrated that Aiolos is a downstream effector of Kidins220 during iNKT cell development. In the periphery, T-KO iNKT cells show reduced TCR signaling upon stimulation with α-galactosylceramide, suggesting that Kidins220 promotes TCR signaling in peripheral iNKT cells. Thus, Kidins220 reduces or promotes signaling dependent on the iNKT cell developmental stage.


Assuntos
Fator de Transcrição Ikaros , Proteínas de Membrana , Células T Matadoras Naturais , Timo , Animais , Camundongos , Diferenciação Celular , Regulação da Expressão Gênica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais , Proteínas de Membrana/metabolismo , Fator de Transcrição Ikaros/metabolismo , Timo/citologia , Timo/metabolismo
4.
Cell Genom ; 4(4): 100526, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38537633

RESUMO

Hispanic/Latino children have the highest risk of acute lymphoblastic leukemia (ALL) in the US compared to other racial/ethnic groups, yet the basis of this remains incompletely understood. Through genetic fine-mapping analyses, we identified a new independent childhood ALL risk signal near IKZF1 in self-reported Hispanic/Latino individuals, but not in non-Hispanic White individuals, with an effect size of ∼1.44 (95% confidence interval = 1.33-1.55) and a risk allele frequency of ∼18% in Hispanic/Latino populations and <0.5% in European populations. This risk allele was positively associated with Indigenous American ancestry, showed evidence of selection in human history, and was associated with reduced IKZF1 expression. We identified a putative causal variant in a downstream enhancer that is most active in pro-B cells and interacts with the IKZF1 promoter. This variant disrupts IKZF1 autoregulation at this enhancer and results in reduced enhancer activity in B cell progenitors. Our study reveals a genetic basis for the increased ALL risk in Hispanic/Latino children.


Assuntos
Predisposição Genética para Doença , Leucemia-Linfoma Linfoblástico de Células Precursoras , Humanos , Criança , Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Fatores de Transcrição/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Hispânico ou Latino/genética , Fator de Transcrição Ikaros/genética
5.
Br J Haematol ; 204(4): 1344-1353, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479427

RESUMO

This study investigates the potential utility of IKZF1 deletion as an additional high-risk marker for paediatric acute lymphoblastic leukaemia (ALL). The prognostic impact of IKZF1 status, in conjunction with minimal/measurable residual disease (MRD), was evaluated within the MRD-guided TPOG-ALL-2013 protocol using 412 newly diagnosed B-ALL patients aged 1-18. IKZF1 status was determined using multiplex ligation-dependent probe amplification. IKZF1 deletions, when co-occurring with CDKN2A, CDKN2B, PAX5 or PAR1 region deletions in the absence of ERG deletions, were termed IKZF1plus. Both IKZF1 deletion (14.6%) and IKZF1plus (7.8%) independently predicted poorer outcomes in B-ALL. IKZF1plus was observed in 4.1% of Philadelphia-negative ALL, with a significantly lower 5-year event-free survival (53.9%) compared to IKZF1 deletion alone (83.8%) and wild-type IKZF1 (91.3%) (p < 0.0001). Among patients with Day 15 MRD ≥0.01%, provisional high-risk patients with IKZF1plus exhibited the worst outcomes in event-free survival (42.0%), relapse-free survival (48.0%) and overall survival (72.7%) compared to other groups (p < 0.0001). Integration of IKZF1plus and positive Day 15 MRD identified a subgroup of Philadelphia-negative B-ALL with a 50% risk of relapse. This study highlights the importance of assessing IKZF1plus alongside Day 15 MRD positivity to identify patients at increased risk of adverse outcomes, potentially minimizing overtreatment.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Deleção de Genes , Fator de Transcrição Ikaros/genética , Recidiva Local de Neoplasia , Neoplasia Residual/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Prognóstico , Medição de Risco , Fatores de Transcrição , Lactente , Pré-Escolar , Adolescente
6.
Science ; 383(6682): eadi5798, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38301010

RESUMO

Increasing use of covalent and noncovalent inhibitors of Bruton's tyrosine kinase (BTK) has elucidated a series of acquired drug-resistant BTK mutations in patients with B cell malignancies. Here we identify inhibitor resistance mutations in BTK with distinct enzymatic activities, including some that impair BTK enzymatic activity while imparting novel protein-protein interactions that sustain B cell receptor (BCR) signaling. Furthermore, we describe a clinical-stage BTK and IKZF1/3 degrader, NX-2127, that can bind and proteasomally degrade each mutant BTK proteoform, resulting in potent blockade of BCR signaling. Treatment of chronic lymphocytic leukemia with NX-2127 achieves >80% degradation of BTK in patients and demonstrates proof-of-concept therapeutic benefit. These data reveal an oncogenic scaffold function of mutant BTK that confers resistance across clinically approved BTK inhibitors but is overcome by BTK degradation in patients.


Assuntos
Tirosina Quinase da Agamaglobulinemia , Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Ikaros , Leucemia Linfocítica Crônica de Células B , Inibidores de Proteínas Quinases , Proteólise , Humanos , Tirosina Quinase da Agamaglobulinemia/genética , Tirosina Quinase da Agamaglobulinemia/metabolismo , Fator de Transcrição Ikaros/metabolismo , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/genética , Mutação , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais , Proteólise/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos
7.
Clin Immunol ; 260: 109922, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38320737

RESUMO

IKAROS, encoded by IKZF1, is a tumor suppressor and a key hematopoietic transcription factor responsible for lymphoid and myeloid differentiation. IKZF1 mutations result in inborn errors of immunity presenting with increased susceptibility to infections, immune dysregulation, and malignancies. In particular, patients carrying IKZF1 gain-of-function (GOF) mutations mostly exhibit symptoms of immune dysregulation and polyclonal plasma cell proliferation. Herein, we describe seven new IKAROS GOF cases from two unrelated families, presenting with novel infectious, immune dysregulation and hematologic diseases. Two of the patients underwent allogeneic hematopoietic cell transplantation (HCT) due to poorly responsive complications. HCT was well-tolerated achieving full engraftment in both patients receiving reduced intensity, matched unrelated donor grafts, with no severe acute or chronic graft-vs-host-disease, and in remission from their diseases 2.5 and 4 years post-HCT, respectively. These results suggest that HCT is a valid and curative option in patients with IKAROS GOF disease and severe clinical manifestations.


Assuntos
Doenças Hematológicas , Transplante de Células-Tronco Hematopoéticas , Fator de Transcrição Ikaros , Humanos , Mutação com Ganho de Função , Condicionamento Pré-Transplante/métodos , Fator de Transcrição Ikaros/genética
9.
J Clin Lab Anal ; 38(1-2): e24999, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38193570

RESUMO

BACKGROUND AND AIM: Metabolic syndrome (MetS) increases the risk of atherosclerosis and diabetes, but there are no approved predictive markers. This study assessed the role of specific genetic variations in MetS susceptibility and their impact on clinical manifestations. METHOD: In this study, a genotype-phenotype assessment was performed for IKZF3 (rs907091), microRNA-let-7a-2 (rs1143770), and lncRNA-CDKN2B-AS1 (rs1333045). RESULTS: Analyses indicate that while rs907091 and rs1143770 may have potential associations with MetS susceptibility and an increased risk of atherosclerosis and diabetes, there is an observed trend suggesting that the rs1333045 CC genotype may be associated with a decreased risk of MetS. The genotypes and allele frequencies of rs1333045 were significantly different between studied groups (OR = 0.56, 95% CI 0.38-0.81, p = 0.002, and OR = 0.71, 95% CI 0.55-0.92, p = 0.008), with the CC genotype displaying increased levels of HDL. Furthermore, the rs907091 TT genotype was associated with increased triglyceride, cholesterol, and HOMA index in MetS patients. Subjects with the CC genotype for rs1143770 had higher HbA1c and BMI. In silico analyses illustrated that rs907091 C remarkably influences the secondary structure and the target site of a broad spectrum of microRNAs, especially hsa-miR-4497. Moreover, rs1333045 creates a binding site for seven different microRNAs. CONCLUSION: Further studies on other populations may help confirm these SNPs as useful predictive markers in assessing the MetS risk.


Assuntos
Aterosclerose , Diabetes Mellitus , Síndrome Metabólica , MicroRNAs , RNA Longo não Codificante , Humanos , Predisposição Genética para Doença/genética , Genótipo , Fator de Transcrição Ikaros/genética , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Polimorfismo de Nucleotídeo Único/genética , RNA Antissenso/genética
10.
Cancer Res Commun ; 4(2): 312-327, 2024 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-38265263

RESUMO

Reducing casein kinase 1α (CK1α) expression inhibits the growth of multiple cancer cell lines, making it a potential therapeutic target for cancer. Herein, we evaluated the antitumor activity of FPFT-2216-a novel low molecular weight compound-in lymphoid tumors and elucidated its molecular mechanism of action. In addition, we determined whether targeting CK1α with FPFT-2216 is useful for treating hematopoietic malignancies. FPFT-2216 strongly degraded CK1α and IKAROS family zinc finger 1/3 (IKZF1/3) via proteasomal degradation. FPFT-2216 exhibited stronger inhibitory effects on human lymphoma cell proliferation than known thalidomide derivatives and induced upregulation of p53 and its transcriptional targets, namely, p21 and MDM2. Combining FPFT-2216 with an MDM2 inhibitor exhibited synergistic antiproliferative activity and induced rapid tumor regression in immunodeficient mice subcutaneously transplanted with a human lymphoma cell line. Nearly all tumors in mice disappeared after 10 days; this was continuously observed in 5 of 7 mice up to 24 days after the final FPFT-2216 administration. FPFT-2216 also enhanced the antitumor activity of rituximab and showed antitumor activity in a patient-derived diffuse large B-cell lymphoma xenograft model. Furthermore, FPFT-2216 decreased the activity of the CARD11/BCL10/MALT1 (CBM) complex and inhibited IκBα and NFκB phosphorylation. These effects were mediated through CK1α degradation and were stronger than those of known IKZF1/3 degraders. In conclusion, FPFT-2216 inhibits tumor growth by activating the p53 signaling pathway and inhibiting the CBM complex/NFκB pathway via CK1α degradation. Therefore, FPFT-2216 may represent an effective therapeutic agent for hematopoietic malignancies, such as lymphoma. SIGNIFICANCE: We found potential vulnerability to CK1α degradation in certain lymphoma cells refractory to IKZF1/3 degraders. Targeting CK1α with FPFT-2216 could inhibit the growth of these cells by activating p53 signaling. Our study demonstrates the potential therapeutic application of CK1α degraders, such as FPFT-2216, for treating lymphoma.


Assuntos
Neoplasias Hematológicas , Linfoma Difuso de Grandes Células B , Piperidonas , Triazóis , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/metabolismo , Transdução de Sinais , Caseína Quinases/metabolismo , Fator de Transcrição Ikaros/metabolismo
11.
Nat Immunol ; 25(2): 240-255, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38182668

RESUMO

Ikaros transcription factors are essential for adaptive lymphocyte function, yet their role in innate lymphopoiesis is unknown. Using conditional genetic inactivation, we show that Ikzf1/Ikaros is essential for normal natural killer (NK) cell lymphopoiesis and IKZF1 directly represses Cish, a negative regulator of interleukin-15 receptor resulting in impaired interleukin-15 receptor signaling. Both Bcl2l11 and BIM levels, and intrinsic apoptosis were increased in Ikzf1-null NK cells, which in part accounts for NK lymphopenia as both were restored to normal levels when Ikzf1 and Bcl2l11 were co-deleted. Ikzf1-null NK cells presented extensive transcriptional alterations with reduced AP-1 transcriptional complex expression and increased expression of Ikzf2/Helios and Ikzf3/Aiolos. IKZF1 and IKZF3 directly bound AP-1 family members and deletion of both Ikzf1 and Ikzf3 in NK cells resulted in further reductions in Jun/Fos expression and complete loss of peripheral NK cells. Collectively, we show that Ikaros family members are important regulators of apoptosis, cytokine responsiveness and AP-1 transcriptional activity.


Assuntos
Células Matadoras Naturais , Fator de Transcrição AP-1 , Fator de Transcrição AP-1/genética , Células Matadoras Naturais/metabolismo , Receptores de Interleucina-15 , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo
12.
Cancer ; 130(6): 973-984, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38018448

RESUMO

BACKGROUND: Acute lymphoblastic leukemia (ALL) is the most common cancer in children. IKZF3 (IKAROS family zinc finger 3) is a hematopoietic-specific transcription factor, and it has been validated that it is involved in leukemia. However, the role of IKZF3 single-nucleotide polymorphisms (SNPs) remains unclear. In this case-control study, the authors investigated the association of IKZF3 SNPs with ALL in children. METHODS: Six IKZF3 reference SNPs (rs9635726, rs2060941, rs907092, rs12946510, rs1453559, and rs62066988) were genotyped in 692 patients who had ALL (cases) and in 926 controls. The associations between IKZF3 polymorphisms and ALL risk were determined using odds ratios (ORs) and 95% confidence intervals (CIs). The associations of rs9635726 and rs2060941 with the risk of ALL were further estimated by using false-positive report probability (FPRP) analysis. Functional analysis in silico was performed to evaluate the probability that rs9635726 and rs2060941 might influence the regulation of IKZF3. RESULTS: The authors observed that rs9635726C>T (adjusted OR, 1.49; 95% CI, 1.06-2.11; p = .023) and rs2060941G>T (adjusted OR, 1.51; 95% CI, 1.24-1.84; p = .001) were related to and increased risk of ALL in the recessive and dominant models, respectively. Furthermore, the associations of both rs9635726 (FPRP = .177) and rs2060941 (FPRP < .001) with ALL were noteworthy in the FPRP analysis. Functional analysis indicated that rs9635726 and rs2060941 might repress the transcription of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. CONCLUSIONS: This study revealed that IKZF3 polymorphisms were associated with increased ALL susceptibility in children and might influence the expression of IKZF3 by disrupting its binding to MLLT1, TAF1, POLR2A, and/or RAD21. IKZF3 polymorphisms were suggested as a biomarker for childhood ALL.


Assuntos
Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Estudos de Casos e Controles , Genótipo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição Ikaros/genética , Predisposição Genética para Doença
13.
Pediatr Hematol Oncol ; 41(2): 103-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37578068

RESUMO

Acute lymphoblastic leukemia (ALL) is the most frequent type of pediatric cancer. Germline single nucleotide polymorphisms (SNPs), including ARID5B (rs10821936 T/C), IKZF1 (rs4132601 T/G), GATA3 (rs3824662 G/T), CEBPE (rs2239633 G/A), and CDKN2A (rs3731217 A/C) have been linked to pediatric ALL in different populations. Hitherto, no previous studies have tested the relationship between these SNPs and pediatric ALL in Gaza strip. Therefore, we investigated the association between these polymorphisms and the occurrence of childhood ALL in this part of Palestine. This case-control study recruited 100 healthy controls and 78 ALL patients. Allele-specific PCR (AS-PCR) technique was used for SNPs genotyping. Relevant statistical tests were used and the multifactor dimensionality reduction (MDR) approach was applied in the analysis of gene-gene interactions. Minor alleles of ARID5B rs10821936 T/C (p = 0.007) and IKZF1 rs4132601 T/G (p = 0.045) were significantly higher in ALL patients. The homozygous (TT) genotype of GATA3 rs3824662 G/T (p = 0.038), (CC) of ARID5B rs10821936 T/C (p = 0.008), and (AC and CC) genotypes of CDKN2A rs3731217 A/C (p < 0.0001) were significantly higher in ALL cases. On MDR analysis, the best model for ALL risk was the five-factor model combination of the examined SNPs (CVC = 10/10; TBA = 0.632; p < 0.0001). This work demonstrates the association of ARID5B rs10821936 T/C, IKZF1 rs4132601 T/G, GATA3 rs3824662 G/T, and CDKN2A rs3731217 A/C polymorphisms with increased risk of pediatric ALL among a patient cohort from Gaza Strip. Further studies with a larger sample size are needed in order to confirm these findings and test the value of these SNPs in prognosis and treatment sensitivity.


Assuntos
Inibidor p16 de Quinase Dependente de Ciclina , Proteínas de Ligação a DNA , Leucemia-Linfoma Linfoblástico de Células Precursoras , Criança , Humanos , Proteínas de Ligação a DNA/genética , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Polimorfismo de Nucleotídeo Único , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Fator de Transcrição Ikaros/genética , Células Germinativas , Fator de Transcrição GATA3/genética , Proteínas Estimuladoras de Ligação a CCAAT/genética , Fatores de Transcrição/genética
14.
Biochem Biophys Res Commun ; 694: 149399, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38134477

RESUMO

Ikaros family proteins (Ikaros, Helios, Aiolos, Eos) are zinc finger transcription factors essential for the development and function of the adaptive immune system. They also control developmental events in neurons and other cell types, suggesting that they possess crucial functions across disparate cell types. These functions are likely shared among the organisms in which these factors exist, and it is thus important to obtain a view of their distribution and conservation across organisms. How this family evolved remains poorly understood. Here we mined protein, mRNA and DNA databases to identify proteins with DNA-binding domains homologous to that of Ikaros. We show that Ikaros-related proteins exist in organisms from all four deuterostome phyla (chordates, echinoderms, hemichordates, xenacoelomorpha), but not in more distant groups. While most non-vertebrates have a single family member, this family grew to six members in the acoel worm Hofstenia miamia, three in jawless and four in jawed vertebrates. Most residues involved in DNA contact from zinc fingers 2 to 4 were identical across the Ikaros family, suggesting conserved mechanisms for target sequence recognition. Further, we identified a novel KRKxxxPxK/R motif that inhibits DNA binding in vitro which was conserved across the deuterostome phyla. We also identified a EψψxxxψM(D/E)QAIxxAIxYLGA(D/E)xL motif conserved among human Ikaros, Aiolos, Helios and subsets of chordate proteins, and motifs that are specific to subsets of vertebrate family members. Some of these motifs are targets of mutations in human patients. Finally we show that the atypical family member Pegasus emerged only in vertebrates, which is consistent with its function in bone. Our data provide a novel evolutionary perspective for Ikaros family proteins and suggest that they have conserved regulatory functions across deuterostomes.


Assuntos
Fator de Transcrição Ikaros , Dedos de Zinco , Animais , Humanos , DNA , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , RNA Mensageiro , Dedos de Zinco/genética
15.
J Med Chem ; 66(24): 16953-16979, 2023 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-38085607

RESUMO

Lenalidomide achieves its therapeutic efficacy by recruiting and removing proteins of therapeutic interest through the E3 ligase substrate adapter cereblon. Here, we report the design and characterization of 81 cereblon ligands for their ability to degrade the transcription factor Helios (IKZF2) and casein kinase 1 alpha (CK1α). We identified a key naphthamide scaffold that depleted both intended targets in acute myeloid leukemia MOLM-13 cells. Structure-activity relationship studies for degradation of the desired targets over other targets (IKZF1, GSPT1) afforded an initial lead compound DEG-35. A subsequent scaffold replacement campaign identified DEG-77, which selectively degrades IKZF2 and CK1α, and possesses suitable pharmacokinetic properties, solubility, and selectivity for in vivo studies. Finally, we show that DEG-77 has antiproliferative activity in the diffuse large B cell lymphoma cell line OCI-LY3 and the ovarian cancer cell line A2780 indicating that the dual degrader strategy may have efficacy against additional types of cancer.


Assuntos
Caseína Quinase Ialfa , Neoplasias Ovarianas , Humanos , Feminino , Linhagem Celular Tumoral , Lenalidomida/farmacologia , Ubiquitina-Proteína Ligases/metabolismo , Caseína Quinase Ialfa/metabolismo , Proteólise , Fator de Transcrição Ikaros/metabolismo
16.
Immunity ; 56(11): 2584-2601.e7, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37922905

RESUMO

Understanding how HIV-1-infected cells proliferate and persist is key to HIV-1 eradication, but the heterogeneity and rarity of HIV-1-infected cells hamper mechanistic interrogations. Here, we used single-cell DOGMA-seq to simultaneously capture transcription factor accessibility, transcriptome, surface proteins, HIV-1 DNA, and HIV-1 RNA in memory CD4+ T cells from six people living with HIV-1 during viremia and after suppressive antiretroviral therapy. We identified increased transcription factor accessibility in latent HIV-1-infected cells (RORC) and transcriptionally active HIV-1-infected cells (interferon regulatory transcription factor [IRF] and activator protein 1 [AP-1]). A proliferation program (IKZF3, IL21, BIRC5, and MKI67 co-expression) promoted the survival of transcriptionally active HIV-1-infected cells. Both latent and transcriptionally active HIV-1-infected cells had increased IKZF3 (Aiolos) expression. Distinct epigenetic programs drove the heterogeneous cellular states of HIV-1-infected cells: IRF:activation, Eomes:cytotoxic effector differentiation, AP-1:migration, and cell death. Our study revealed the single-cell epigenetic, transcriptional, and protein states of latent and transcriptionally active HIV-1-infected cells and cellular programs promoting HIV-1 persistence.


Assuntos
Infecções por HIV , HIV-1 , Humanos , Infecções por HIV/genética , HIV-1/fisiologia , Latência Viral/genética , Linfócitos T CD4-Positivos , Fator de Transcrição AP-1 , Epigênese Genética , Fator de Transcrição Ikaros/genética
17.
Leukemia ; 37(12): 2395-2403, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37833543

RESUMO

Genetic lesions of IKZF1 are frequent events and well-established markers of adverse risk in acute lymphoblastic leukemia. However, their function in the pathophysiology and impact on patient outcome in acute myeloid leukemia (AML) remains elusive. In a multicenter cohort of 1606 newly diagnosed and intensively treated adult AML patients, we found IKZF1 alterations in 45 cases with a mutational hotspot at N159S. AML with mutated IKZF1 was associated with alterations in RUNX1, GATA2, KRAS, KIT, SF3B1, and ETV6, while alterations of NPM1, TET2, FLT3-ITD, and normal karyotypes were less frequent. The clinical phenotype of IKZF1-mutated AML was dominated by anemia and thrombocytopenia. In both univariable and multivariable analyses adjusting for age, de novo and secondary AML, and ELN2022 risk categories, we found mutated IKZF1 to be an independent marker of adverse risk regarding complete remission rate, event-free, relapse-free, and overall survival. The deleterious effects of mutated IKZF1 also prevailed in patients who underwent allogeneic hematopoietic stem cell transplantation (n = 519) in both univariable and multivariable models. These dismal outcomes are only partially explained by the hotspot mutation N159S. Our findings suggest a role for IKZF1 mutation status in AML risk modeling.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Adulto , Humanos , Nucleofosmina , Mutação , Fatores de Transcrição/genética , Leucemia Mieloide Aguda/patologia , Tirosina Quinase 3 Semelhante a fms/genética , Prognóstico , Fator de Transcrição Ikaros/genética
18.
Front Immunol ; 14: 1239779, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662955

RESUMO

AIOLOS, encoded by IKZF3, is a member of the IKZF family of proteins that plays an important role in regulating late B-cell differentiation. Human individuals heterozygous for the AIOLOS p.N160S variant displayed impaired humoral immune responses as well as impaired B and T cell development. We have previously reported that a mouse strain harboring an Ikzf3N159S allele that corresponds to human IKZF3N160S recapitulated immune-deficient phenotypes, such as impaired B cell development and loss of CD23 expression. In this study, we investigated the effect of the Ikzf3N159S variant and found that B1a cell development was impaired in Ikzf3N159S/N159S mice. In addition, CD62L expression was severely decreased in both B and T lymphocytes by the Ikzf3N159S mutation, in a dose-dependent manner. Mixed bone marrow chimera experiments have revealed that most immunodeficient phenotypes, including low CD62L expression, occur in intrinsic cells. Interestingly, while Ikzf3N159S/N159S lymphocytes were still present in the spleen, they were completely outcompeted by control cells in the lymph nodes, suggesting that the capacity for homing or retention in the lymph nodes was lost due to the Ikzf3N159S mutation. The homing assay confirmed severely decreased homing abilities to lymph nodes of Ikzf3N159S/N159S B and T lymphocytes but selective enrichment of CD62L expressing Ikzf3N159S/N159S lymphocytes in lymph nodes. This finding suggests that impaired CD62L expression is the major reason for the impaired homing capacity caused by the Ikzf3N159S mutation. Interestingly, an excess amount of Ikaros, but not Aiolos, restored CD62L expression in Ikzf3N159S/N159S B cells. Together with the loss of CD62L expression due to Ikaros deficiency, the AiolosN159S mutant protein likely interferes with Ikaros function through heterodimerization, at least in activating the Sell gene encoding CD62L expression. Thus, our results revealed that AiolosN159S causes some immunodeficient phenotypes via the pathogenesis referred to as the heterodimeric interference as observed for AiolosG158R variant.


Assuntos
Linfócitos B , Fator de Transcrição Ikaros , Animais , Humanos , Camundongos , Alelos , Diferenciação Celular/genética , Heterozigoto , Fator de Transcrição Ikaros/genética
19.
Front Immunol ; 14: 1257581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771582

RESUMO

This report illustrates a case that would have been missed in the most common screening algorithms used worldwide in newborn screening (NBS) for severe combined immunodeficiency (SCID). Our patient presented with a clinical picture that suggested a severe inborn error of immunity (IEI). The 6-month-old baby had normal T-cell receptor excision circle (TREC) levels but no measurable level of kappa-deleting recombination excision circles (KRECs) in the NBS sample. A de novo IKZF1-mutation (c.476A>G, p.Asn159Ser) was found. The clinical picture, immunologic workup, and genetic result were consistent with IKZF1-related combined immunodeficiency (CID). Our patient had symptomatic treatment and underwent allogeneic hematopoietic cell transplantation (HCT). IKZF1-related CID is a rare, serious, and early-onset disease; this case provides further insights into the phenotype, including KREC status.


Assuntos
Imunodeficiência Combinada Severa , Recém-Nascido , Lactente , Humanos , Imunodeficiência Combinada Severa/diagnóstico , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/terapia , Fenótipo , Triagem Neonatal , Fator de Transcrição Ikaros/genética
20.
Clin Transl Med ; 13(8): e1364, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37581569

RESUMO

BACKGROUND: The immunomodulatory drug lenalidomide, which is now widely used for the treatment of multiple myeloma (MM), exerts pharmacological action through the ubiquitin-dependent degradation of IKZF1 and subsequent down-regulation of interferon regulatory factor 4 (IRF4), a critical factor for the survival of MM cells. IKZF1 acts principally as a tumour suppressor via transcriptional repression of oncogenes in normal lymphoid lineages. In contrast, IKZF1 activates IRF4 and other oncogenes in MM cells, suggesting the involvement of unknown co-factors in switching the IKZF1 complex from a transcriptional repressor to an activator. The transactivating components of the IKZF1 complex might promote lenalidomide resistance by residing on regulatory regions of the IRF4 gene to maintain its transcription after IKZF1 degradation. METHODS: To identify unknown components of the IKZF1 complex, we analyzed the genome-wide binding of IKZF1 in MM cells using chromatin immunoprecipitation-sequencing (ChIP-seq) and screened for the co-occupancy of IKZF1 with other DNA-binding factors on the myeloma genome using the ChIP-Atlas platform. RESULTS: We found that c-FOS, a member of the activator protein-1 (AP-1) family, is an integral component of the IKZF1 complex and is primarily responsible for the activator function of the complex in MM cells. The genome-wide screening revealed the co-occupancy of c-FOS with IKZF1 on the regulatory regions of IKZF1-target genes, including IRF4 and SLAMF7, in MM cells but not normal bone marrow progenitors, pre-B cells or mature T-lymphocytes. c-FOS and IKZF1 bound to the same consensus sequence as the IKZF1 complex through direct protein-protein interactions. The complex also includes c-JUN and IKZF3 but not IRF4. Treatment of MM cells with short-hairpin RNA against FOS or a selective AP-1 inhibitor significantly enhanced the anti-MM activity of lenalidomide in vitro and in two murine MM models. Furthermore, an AP-1 inhibitor mitigated the lenalidomide resistance of MM cells. CONCLUSIONS: C-FOS determines lenalidomide sensitivity and mediates drug resistance in MM cells as a co-factor of IKZF1 and thus, could be a novel therapeutic target for further improvement of the prognosis of MM patients.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Fator de Transcrição Ikaros , Lenalidomida , Mieloma Múltiplo , Proteínas Proto-Oncogênicas c-fos , Animais , Humanos , Camundongos , Medula Óssea , Fator de Transcrição Ikaros/genética , Fator de Transcrição Ikaros/metabolismo , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Transativadores/uso terapêutico , Fator de Transcrição AP-1/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...